Contaminant driven genetic erosion and associated hypotheses on alleles loss, reduced population growth rate and increased susceptibility to future stressors: an essay
نویسندگان
چکیده
Microevolution due to pollution can occur mainly through genetic drift bottlenecks, especially of small sized populations facing intense lethal pulses of contaminants, through mutations, increasing allelic diversity, and through natural selection, with the disappearance of the most sensitive genotypes. This loss of genotypes can lead to serious effects if coupled to specific hypothetical scenarios. These may be categorized as leading, first, to the loss of alleles-the recessive tolerance inheritance hypothesis. Second, leading to a reduction of the population growth rate-the mutational load and fitness costs hypotheses. Third, leading to an increased susceptibility of further genetic erosion both at future inputs of the same contaminant-differential physiological recovery, endpoints (dis)association, and differential phenotypic plasticity hypotheses-and at sequential or simultaneous inputs of other contaminants-the multiple stressors differential tolerance hypothesis. Species in narrowly fluctuating environments (tropics and deep sea) may have a particularly high susceptibility to genetic erosion-the Plus ça change (plus c'est la meme chose) hypothesis. A discussion on the consequences of these hypotheses is what this essay aimed at.
منابع مشابه
Determination of Susceptibility to Rill and Interrill Erosion of some Semi-Arid Soils using Rainfall Simulator in Laboratory Conditions
In semi-arid regions, soils are weakly aggregated and subjected to water erosion processes especially rill and interrill erosion. There is no information on the rate of these water erosion types in semi-arid soils located in the hillslopes. Therefore, this study was conducted to determine the soils susceptibility to these erosion types in semi-arid region. A laboratory experiment was done in ei...
متن کاملAssociation between Thrombophilic Genes Polymorphisms and Recurrent Pregnancy Loss Susceptibility in the Iranian Population: a Systematic Review and Meta-Analysis
Studies have indicated that thrombophilic genes polymorphisms are associated with recurrent pregnancy loss (RPL) in the Iranian population. We aimed to evaluate the precise association between thrombophilic genes polymorphisms (MTHFR C677T, MTHFR A1298C, Prothrombin G20210A, FVL G1691A, and PAI-1 4G/5G) and RPL risk in the Iranian population. PubMed, Web of Science, Google Scholar, an...
متن کاملGenetic diversity analysis and population structure of some Iranian Fenugreek (Trigonella foenum-graecum L.) landraces using SRAP Markers
Fenugreek is one of the important edible and medicinal vegetables that have a long history of cultivation and consumption. Characterize the extent of the genetic diversity among landraces will provide a good context for future breeding programs and genetic resource preservation. Genetic diversity and population structure of 88 individuals of eight landraces of Iranian fenugreek evaluated based ...
متن کاملSingle Nucleotide Polymorphism (SNP) in the Adiponectin Gene and Cardiovascular Disease
Dear Editor, The recent article by Mohammadzadeh et al.[1] on the latest issue of this Journal showed that the T allele +276G/T SNP of ADIPOQ gene is more associated with the increasing risk of coronary artery disease (CAD) in subjects with type 2 diabetes. Adipocytes were described in myocardial tissue of CAD patients and their role recently discussed[2,3]. Susceptibility to CAD by polymorp...
متن کاملMHC IIB Genetic Diversity and its Association With Humoral Immune Responses in Commercial Turkey
Background: Major histocompatibility complex (MHC) is one of the best characterized genetic regions controlling immune responses against vaccines. Identifying the association between MHC haplotypes and improved immune responses would be useful in genetic breeding strategies in animals. OBJECTIVES: MHC class II B genetic diversity and its association with humoral immune responses against Newcast...
متن کامل